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ABSTRACT 

Two procedures, the feasible directionmethod and sequential linear 
programming, for shape optimization of gas turbine disks are present- 
ed in this paper. The objective of these procedures is to obtain 
optimal designs of turbine disks with geometric and stress con- 
straints. The coordinates of the selected points on the disk con- 
tours are used as the design variables. Structural weight, stress 
and their derivatives with respect to the design variables are 
calculated by an efficient finite-element method for design sensitiv- 
ity analysis. Numerical examples of the optimal designs of a disk 
subjected to thermo-mechanical loadings are presented to illustrate 
and compare the effectiveness of these two procedures. 

1. INTRODUCTION 

The problem of how to efficiently minimize the weight of a gas 
turbine engine disk while satisfying the stress design requirement 
and keeping the disk size within a prescribed geometric envelope is 
an important topic in the gas turbine industry. A stress function in 
common use is the Von Mises stress. Therefore, a requirement can be 
to limit the value of the von Mises stress anywhere on the d i s k t o  
a prescribed value. 

This task becomes one of shape optimization of an axisymmetric 
structure with the objective of minimizing the weight while meeting 
the geometric and the stress constraints. Each of the procedures 
involved requires a solver and an optimizer. The solver provides 
weight, stress and their derivatives with respect to the design 
variables. An optimizer must be selected which can effectively 
utilize the solver. 

It has been shown that the weight and stress gradients can be ob- 
tained directly from a finite-element program [l-51. In this paper, 
two optimization procedures which can effectively utilize the weight 
and stress gradients are proposed for disk shape optimization. These 
two methods are the feasible direction method[6]and sequential linear 
programming [1,4,7]. 

In structural optimization, design variables may be finite-element 
nodal coordinates, element thickness, etc. The derivatives of the 
objective function and the constraint functions with respect to the 
design variables provide the variational trends of the structures for 
optimization. Calculation of these derivatives is known as design 
sensitivity analysis. 

In this paper, an efficient method is used for design sensitivity 
analysis [5]. The technique of isoparametric mapping is used to 
generate a finite-element mesh from a small set of master nodes. In 
order to assure that a general boundary shape can be achieved for the 
optimal design of a complex structural shape, selected coordinates of 
the master nodes are used as the design variables. These variables 
are permitted to change within a specified design envelope. 
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The formulations and computational results of these two optimization 
procedures are presented in the following sections. 

2. FORMULATION 

2.1 PROBLEM STATEMENT 

The general statement of the problem to be dealt with in this paper 
is to minimize an objective function 

F = f(A) (1) 

while satisfying the constraints 

where the N dimensional hyperspace design point, A, is a vector of 
design variables initially lying in the feasible region with side 
constraints 

i = l,...,N ( 3 )  
I IJ ai 5 ai 6 ai 

In this paper, the objective function is W, the structural weight, 
the constraint functions are the structural response such as Q ,  the 
stress, and the design variables are the coordinates of the selected 
points on the structural contours with upper and lower constraints 
$ and a' . i i 

2.2 FEASIBLE DIRECTION METHOD 

The feasible direction method efficiently uses weight and constraint 
gradients. This method requires two operational phases. The first 
one is the steepest decent phase (SD) which requires only the weight 
gradients, the second one is a linear programming phase (LP) which 
requires both the weight and constraint gradients. 

Starting with a feasible design point, I f ,  a better point 

A = A o  + a s  

can be achieved by moving A" in the feasible region a distance of 
a in the direction S. 

( 4 )  

The feasible region is bounded by the constraint limits with the 
constraint margins, e' , as shown in Figure 1. The boundary zones 
which are thus formed by the hypersurfaces parallel to the constraint 
limit hypersurfaces are known as the LP region. The rest of the 
feasible space is known as the SD region. The design points within 
either regions are the feasible design points. 
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Figure 1. Design space for feasible direction method. 
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In the SD region S is the negative of the weight gradients, while in 
the LP region S is calculated by a linear programming procedure, [8], 
with the formulations 

rn af 

and side constraints on directions are 

Si \ < 2  i = 1, ..., N (7) 

si 3 0 i = l,...,N (8) 

where e j  

After a feasible direction to proceed is found, the distance to 
travel in that direction is calculated by using a Powell's univariate 
search. The minimum distance to be traveled is 0. The maximum 
distance is taken to be the maximum of all the permissible variation 
of each design variable in the feasible region. The actual distance 
will occur at any point along the line between 0 and the maximum 
distance point. 

are the pushoff factors and B is the objective function. 

Before engaging in Powell's search, t h e  finite-element method is u s e d  to 
check if a negative determinant of Jacobi transformation matrix 
occurs at any Gauss integration point [9]. If a design point yields 
a negative value, then the design point is moved back along the line 
by a specified fraction. If a negative value still results, the 
process is repeated until a positive value occurs. This positive 
value is taken as the maximum distance for a Powell's univariate 
search. If the new design point is in the feasible region, a new 
direction and univariate search will be made again for the next 
iteration. If this new point is in the infeasible region, then an 
interpolation scheme is used to bring the design point back into the 
feasible region [6]. If the geometric constraints are violated, a 
linear interpolation routine is used. If the stress constraint is 
violated, a quadratic interpolation procedure is used. 

After a new feasible design point is found, the process is repeated 
until the convergence criteria are satisfied. 

2.3 SEQUENTIAL LINEAR PROGRAMMING 

The sequential linear programming procedure linearizes the nonlinear 
objective and constraint functions within a specified range where the 
linear programming procedure will be applied repeatedly. This method 
efficiently utilizes the gradients of the objective and the con- 
straint functions and has been shown to be reliable in many different 
applications. 
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The structural weight and responses generally are nonlinear functions 
of the design variables. Using a first order Taylor series expansion 
centered at the current design, these functions can be approximated 
by 

w = w  0 +I--- ( ai- a: ) aa i 

a = u  0 + (ai-ao i 1 
1 i 

where the superscript o denotes the current design. 

These equations are used to form a linear programming problem 

- 

and the side constraints on design variables 

ais a: ( I+A 

-ai< -ai ( 1 - A  0 

where 

Ac=Max ( Ai 

Ac = r .  A 

for the beginning of each LP 
iteration 
for the subsequent LP iteration 

and r is the step size reduction factor. 

The linear programming problem is solved by a revised simplex method 
[8]. After a new design is found, the process is repeated until the 
convergence criteria are satisfied. 

3 .  Numerical Examples 

Shape optimization of an actual gas turbine disk subjected to 
thermo-mechanical loadings is used as an illustration. The flow 
chart of the design optimization process is shown in Figure 2. 
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Figure 2. Disk design optimization system flow chart 
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The master finite-element mesh and the generated finite-element mesh 
are shown in Figures 3a and 3b. Seventy master nodes are used to 
form 38 4-noded linear master elements for the disk. Both radial and 
axial coordinates of master nodes numbered from 1 through 30 are used 
as design variables. The finite-element mesh generated from the 
master finite-element mesh has 130 8-noded quadratic elements and 469 
nodes. 

This disk has a uniform initial temperature of 70°F. The radial 
coordinates at the hub and the tip of the disk are 0.8 inch and 4.85 
inches, respectively. The operating temperatures of the disk are set 
arbitrarily to vary linearly from 80°F at the hub to 485OF at the 
tip. 

The disk rotates at a constant speed of 22,000 rpm. It has a dis- 
tributed load of 24,000 psi acting radially outward on the tip 
circumferential surface. Axial coordinates of the points on side A-B 
are fixed as boundary conditions. The yield stress of the disk is 
specified at 125,000 psi. The maximum Von Mises stress is used as 
the stress design criterion. 

Feasible direction method and sequential linear programming are used 
in the first and the second examples, respectively. The computer 
software developed was executed on the IBM 3090 using a VS 2.2 
compiler. The optimization procedures are considered to have con- 
verged if the change of the structural weight is less than 0.1% for 
the two successive iterations. The computational results are listed 
in Tables 1 and 2. 

In the first example,the feasible direction method is used.Convergence 
is achieved in 8 iterations with 216 CPU seconds of computational 
time. The total weight is reduced from 18.0 pounds to 13.978 pounds. 
The maximum Von Mises stress is increased from 91,914 psi to 124,668 
psi. 

In the second example, the sequential linear programming is used. 
Convergence is achieved in 9 iterations with 369 CPU seconds of 
computational time. The total weight is reduced from 18.0 pounds to 
13.873 pounds. The maximum Von Mises stress is increased from 91,914 
psi to 124,999 psi. 

The optimal designs of both examples satisfy the stress design 
criterion. However, slightly different weight reductions, 22.35% and 
22.93%, respectively, are achieved for the first and the second 
examples. For the same convergence criterion the first example 
requires about 40% less computational time than the second example. 
However, for the same percentage of weight reduction both methods 
require about the same computational time. 

The shapes of the optimal designs of the two examples are almost 
identical. The shape of the optimal design obtained with the sequen- 
tial linear programming is shown in Figure 4 .  

The computational results indicate that by using the procedures 
developed, shape optimization of gas turbine disks with complicated 
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Figure 4 .  Optimal disk design 

T a b l e  1 .  Computation r e s u l t s  for example 1 .  

0 

1 

2 

3 

4 

5 

6 

7 

8 

Max. Von Mises 
No. Stress ( p s i )  

Oriq i n a l  

SD 

SD 

SD 

SD 

SD 

LP 
I. P 

1,P 

I I 
9 1 9 1 4  

9 1 4 7 8  

9 7 1 8 5  
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1 1 6 6 0 9  

1 2 2 8 2 2  

1 2 3 2 4 3  

1 2 4 9 2 1  

1 2 4 6 8 8  

Weight 
I b  

1 8 . 0 0 0  

1 6 . 9 4 3  

1 5 . 8 7 2  

1 4 . 7 8 4  

1 4 . 3 5 0  

1 4 . 0 2 7  

1 4 . 0 0 0  

1 3 . 9 7 9  

1 3 . 9 7 8  

Successive 
Reduction 

5 . 8 6 9  

6 . 3 2 2  

6 . 8 5 6  

2 . 9 3 7  

2 . 2 4 9  

0 . 1 9 5  

0 . 1 4 9  

0 . 0 0 8  

Tota 1 
Reduction ( 8 )  

5 . 8 6 9  

1 1 . 8 2 0  

1 7 . 8 6 5  

2 0 . 2 7 8  

2 2 . 0 7 1  

2 2 . 2 2 3  

2 2 . 3 3 9  

2 2 . 3 4 5  
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Tab le  2 .  Computation r e s u l t s  for example 2 .  

Iteration 
No. 

0 

1 

~~~ ~ ~ 

Max. Von Mises 
Stress (psi) 

91914 
110802 

121876 
124964 
124755 
124989 
124994 
124997 
124999 
124999 

Weight 
lb 

Successive 
Reduction ( % I  

18.000 

15.012 

14.287 

13.918 

13.896 

13.884 
13.878 

13.875 

13.874 

13.873 

16.602 

4.824 
2.586 

0.161 
0.086 
0.042 
0.020 
0.011 
0.006 

Total 
Reduction ( % I  

16.602 

20.625 
22.678 

22.802 
22.868 
22.901 
22.916 
22.924 
22.929 

contour shapes and loading conditions can be achieved with relatively 
short computational time. 
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